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Announcements & reminders

• Quiz 2 released – due Friday evening

• HW 3 released – due Tuesday 10/18
• Conceptual component of HW due by class time on 10/05

• Some changes made yesterday (very minor). Redownload please.



Pricing so far

• Given a demand distribution d p = 1 −
𝐹 𝑝 , how to calculate optimal prices

arg max
p

p × d p

• How to estimate demand distributions, 
potentially as a function of covariates



Capacity constraints and pricing over time

• Dynamic programming approach

• If you have T time periods to sell an item 
and want to maximize expected revenue, 
what prices p1 …pT do you set?

• Key idea: optimize backwards
• First decide price pT
• Then decide price pT−1

• Posted additional notes; come to OHs for 
additional questions



Plan for today

Last time:
• A little bit on using side-information (user and item vectors) to estimate 

personalized demand
• Capacity constraints over time

Many assumptions from previous lectures:
• Only one item
• Allowed to explicitly give different prices to different users

• Or give different prices over time
• No competition from other sellers
• No over-time dynamics

We’ll peel back some more of these assumptions today



Selling multiple kinds of items
Price differentiation



Example

• Ride-hailing offers different “tiers” of service

• UberPool cheaper than UberX
• Also costs less for the platform

• How do we price these items together?
• What happens if we do simple revenue maximizing 

price for each item separately?

• What happens if we make UberPool cheaper?



Motivation

Motivation 1:
You simply have multiple kinds of products to sell. Different types of clothes, 
laptops, airline seats, furniture, etc.

Motivation 2:
• Earlier: personalized pricing with covariates
• Challenge: Often you can’t (technically, ethically, legally, …) give different 

prices for the same product to different users based on covariates
• Now: Different “tiers” of service.

• High quality: First class seats, faster service in Uber/Lyft, luxury goods versions, 
get item “now”

• Lower quality: Economy seats, UberPool/Lyft Wait and Save, …

=> Purposely create tiers of service to earn more money from richer 
people while earning something from others



Challenges

• Just like pricing over time, now prices for the 2 items depend on each 
other

Unlike pricing to different demographic segments without capacity constraints 

• Cannibalization: Customers who would have bought the luxury good 
instead buy the cheaper good because it is available



2-item user behavior model

• Suppose you’re selling 2 types of items

• Each person will buy at most one item
• Each person has a private valuation 𝑣1 for item 1 and 𝑣2 for item 2

• Suppose you offer the items at price 𝑝1 and 𝑝2, respectively

• How does the person make their decision?
Utility from item 𝑗 at price 𝑝𝑗 is 𝑣𝑗 − 𝑝𝑗

• Person 𝑖 buys
Neither item if 𝑣1 < 𝑝1 and 𝑣2 < 𝑝2
Item 1 if 𝑣1 ≥ 𝑝1 and 𝑣1 − 𝑝1 ≥ 𝑣2 − 𝑝2
Item 2 if 𝑣2 ≥ 𝑝2 and 𝑣2 − 𝑝2 ≥ 𝑣1 − 𝑝1

Assumption on customer’s “choice 
model.” More generally, customer 
could buy randomly, with choice 
probabilities that depend on 

𝑣𝑗 − 𝑝𝑗



In more detail

How does the person make their decision? Person 𝑖 buys
Neither item if 𝑣1 < 𝑝1 and 𝑣2 < 𝑝2
Item 1 if 𝑣1 ≥ 𝑝1 and 𝑣1 − 𝑝1 ≥ 𝑣2 − 𝑝2
Item 2 if 𝑣2 ≥ 𝑝2 and 𝑣2 − 𝑝2 ≥ 𝑣1 − 𝑝1



Revenue in 2 item model

For a set of prices (𝑝1, 𝑝2), let 
d1 𝑝1, 𝑝2 be fraction of people who buy item 1

(Yellow Region)

d2 𝑝1, 𝑝2 be fraction of people who buy item 2
(Blue Region)

Then, revenue is:
𝑝1 × d1 𝑝1, 𝑝2 + 𝑝2 × d2 𝑝1, 𝑝2

Given functions d1, d2, can solve for optimal 
prices



Cannibalization

Now, each price affects other item.

Revenue: 𝑝1 × d1 𝑝1, 𝑝2 + 𝑝2 × d2 𝑝1, 𝑝2
Suppose decrease 𝑝1 (make item 1 cheaper)

Then:

• Earn less money in yellow region ↓

• Yellow region becomes bigger

White region becomes smaller ↑

Blue region becomes smaller ↓



Demand estimation with multiple items

• With a single item, we suggested machine learning approach to 
estimate: d p, x ≝ 1 − 𝐹𝑝|𝑋 𝑝 𝑋 = 𝑥)

• Assume we have user 𝑖 with covariates 𝑥𝑖
• Now, would need to estimate d1 𝑝1, 𝑝2, 𝑥𝑖 and d2 𝑝1, 𝑝2, 𝑥𝑖
• Gets very hard, very quickly

• Approach 1: Use a multi-class classification algorithm 𝑔 𝑝1, 𝑝2, 𝑥𝑖
[Buy nothing, buy item 1, buy item 2] and then extract class probabilities
(sci-kit learn: use predict_proba with any multi-class classifier)

• Approach 2: (Extend idea from previous class)
• Use user and item vectors, i.e., p1, p2, 𝑢𝑖 ⋅ 𝑤item 1, 𝑢𝑖 ⋅ 𝑤item 2



Sidenote: Substitutes and complements

• So far: motivation -- we have multiple products to sell, that appeal to 
different customers

“cheaper” and “more expensive” product

• Items are “substitutes”: people only buy at most one kind of item

• Sometimes, items are “complements” – buying one item makes the 
other item more attractive
• Soda + popcorn at movie theater

• iPhone and Macbook and Apple Watch and Apple TV and …

• Then, reducing one item’s price might induce you to buy more overall
• An item is a “loss leader”



Putting pieces together: class 
competition



So far we’ve covered

• Recommendation systems
• Given past user and item data, predicting how much each user would like 

each item

• How to turn these predictions into recommendations (with capacity 
constraints)

• Pricing
• Single item revenue maximization

• Estimating demand at each price, potentially with covariates
• Potentially with multiple items, and with using user and item vectors

• Pricing over time with capacity constraints

• Pricing multiple items



Overview: Real-life algorithmic pricing

• You and a single competitor (your classmates) each are selling two 
types of items, Book A and Book B. 
• With some initial capacity of each (let’s pretend 10) No capacity constraints

• A customer walks in and you observe some personal data 
• Just demographic covariates

• Demographic covariates & user vector trained using their past experiences

• You and your competitor post prices for each item

• The customer at most 1 item and leaves

• Repeat for many customers over time



Basic case

• For now, let’s ignore: Competition and capacity constraints

• For each user, you have either just demographic covariates 𝑥𝑖 or also 
a trained user vector 𝑢𝑖 from their past interactions on your site

• You would predict demand for each item, 𝑑1(𝑝𝐴, 𝑝𝐵 𝑥𝑖 , 𝑢𝑖) and 
𝑑2(𝑝𝐴, 𝑝𝐵 , 𝑥𝑖 , 𝑢𝑖) for each set of prices (𝑝𝐴, 𝑝𝐵)
• Your choice on how to estimate this demand

• What do you do for customers with no user vector 𝑢𝑖?

• Set prices to maximize your expected revenue



Complication 1: Capacity constraints

• Now, have 10 copies of each item, and there will be T=100 customers. 

• Now, the price that you set for each item should depend on 
opportunity cost: what if you can sell that item to a different 
customer in the future?

• 3-d Bellman equation: time, capacity of Book A, capacity of Book B

• Set up your Bellman equation:
Vt,k𝐴,k𝐵 = 𝐴 + 𝐵 + 𝐶

A: If I sell Book A today: Revenue today, plus future revenue from 1 less Book A

B: If I sell Book B today : Revenue today, plus future revenue from 1 less Book B

C: If I don’t sell anything: future revenue from same number of copies



How to calculate future revenue?

• As before, future revenue depends on future prices that you set

• …Think about prices you’d set on last day T-1=99
• For each combination of capacities left k𝐴, k𝐵

• Complication: on day t < T − 1 you don’t yet know the customer 
𝑥𝑇−1, 𝑢𝑇−1 that will show up on the last day T − 1!
• You only know customer who has shown up on day t

• When calculating future expected value Vt+1,k𝐴,k𝐵, you need to 
consider the distribution of customers that could show up
• Use training data to consider possible customers that could show up
• Then calculate the prices that you would show each of them



Complication 2: Competition

• You and your opponent both do the same thing, and calculate the exact 
same prices 𝑝𝐴, 𝑝𝐵 at the current time step

• Your opponent is clever, and so decides to undercut you slightly, and so sets 
prices 𝑝𝐴 − $0.01, 𝑝𝐵 − $0.01

• …but you’re cleverer, and know your opponent will do this, and so you set 
prices 𝑝𝐴 − $0.02, 𝑝𝐵 − $0.02

• There’s now a game theory component: you need to anticipate what your 
opponent will do when setting prices

• More complicated: it’s a repeated setting
• If you “lose” today, your competitor has less items in stock for tomorrow
• You can learn parameters for how your opponent behaves



Rest of pricing module

10/3: Pricing in ride-hailing

10/5: What’s acceptable in pricing?
• Required to complete the questionnaire before the class!



Questions?


